CN
EN
王馨
電話:86-10-62796113
傳真:86-10-62773461
E-mail:wangxinlj@tsinghua.edu.cn

【研究方向】

建築熱工

零碳建築

可再生能源利用

 

【教育經曆】

1996.09-2001.05  東南大學 動力工程系 熱能工程專業 博士(直博)

1992.09-1996.07  東南大學 動力工程系 熱能工程專業 學士

 

【工作履曆】

副研究員(2004.12-今),beat365建築技術科學系

歐盟瑪麗居裡學者 (2014.08-2016.08),英國諾丁漢大學建築與建成環境系

講師(2003.06-2004.12),beat365建築技術科學系

博士後(2001.05-2003.05),beat365建築技術科學系

 

【科研項目】

1)   國家自然科學基金面上項目,基于平闆重力熱管相變房的耦合傳熱機理與協同匹配方法研究(52278113),2023-2026主持

2)   十三五國家重點研發項目子課題,近零能耗建築基礎性理論研究 (2017YFC0702601),2017-2021主持

3)   十三五國家重點研發項目子課題,系統主動調控與協調集成原理與方法(2016YFB0901405), 2016-2021主持

4)   國家自然科學基金面上項目, 建築天然氣分布式供能系統相變蓄能調控機理與耦合關聯機制研究(51376098),2014-2017主持

5)   歐盟第七框架瑪麗居裡項目,低碳建築太陽能集熱與PCM圍護結構研究, 2014-2016 中方主持

6)   十二五國家科技支撐項目子課題,高原氣候适應性節能建築關鍵技術研究與示範(2013BAJ03B04),2013-2015主持

7)   國家自然科學基金青年基金項目,基于理想節能建築圍護結構非線性熱容傳熱反問題研究(50906045),2010-2012主持

8)   十一五國家科技支撐重點項目課題,新型建築室内熱濕負荷調節系統研究(2006BAA04B02),2006-2010主持

9)   十一五國家科技支撐項目子課題,建築室内熱濕環境改善材料開發 (2006BAJ02A09-5),2006-2010主持

10)  國家自然科學基金重點項目子課題,潛熱型功能熱流體制備調控方法與強化傳熱機理研究(50436020), 2005-2008主持

 

【榮譽和獲獎】

1)   教育部新世紀優秀人才,2009

2)   歐盟第七框架瑪麗居裡項目(引進人才計劃) 獎學金,2014-2016

3)   相變儲能應用基礎研究,教育部自然科學二等獎,4/11,2005

4)   青藏高原氣候适應性節能建築關鍵技術研究,四川省科技進步一等獎,6/9,2011

5)   可再生能源蓄能技術在低能耗建築的應用研究,建設部華夏科學技術二等獎, 5/12,2015

6)   太陽能-相變蓄熱結合用于建築節能的關鍵問題研究,河北省自然科學二等獎,5/5,2017

7)   Applied Energy、Renewable and Sustainable Energy Reviews、Energy and Buildings, Energy and Environment、Applied Thermal Engineering等國際期刊傑出審稿人

8)   beat365優秀班主任二等獎,2017

9)   beat365優秀黨支部書記,2017

10) beat365先進工作者,2021

 

【學術任職】

1)  SCI國際期刊Indoor and Built Environment編委

2)  中文核心期刊 《太陽能學報》編委

3)  中文核心期刊 《儲能科學與技術》編委

 

【著作與論文】

1)      Xin Wang, Rui Yang, Saffa Riffat. Renewable Energy and Sustainable Technologies for Building and Environmental Applications,Chapter 1: Inverse Problem for Phase Change Materials and Preparation in Building Envelope, Springer International Publishing AG, 2016, 1-24.

2)      張興祥、王馨、吳文健,相變材料膠囊制備與應用,化學工業出版社,2009

3)      張寅平、潘毅群、王馨,專業英語閱讀與寫作,中國建築工業出版社,2005

4)      Fangcheng Kou, Qipeng Gong, Yu Zou, Jinhan Mo, Xin Wang*, Solar application potential and thermal property optimization of building integrated heat pipes, Energy and Buildings  2023, 279, 112688

5)      Fangcheng Kou, Shaohang Shi, Ning Zhu, Yehao Song, Yu Zou, Jinhan Mo, Xin Wang*. Improving the indoor thermal environment in lightweight buildings in winter by passive solar heating: An experimental study, Indoor and Built Environment, 2022, 31:2257-2273.

6)      He Yi, Kou Fangcheng, Wang Xin, Zhu Ning, Song Yehao, Chu Yingnan, Shi Shaohang, Liu Mengjia, Chen Xinxing. Hybrid model combining multivariate regression and machine learning for rapid predicting interior temperature affected by thermal diode and solar cavity, Building and Environment, 2022, 211, 108723

7)      Qipeng Gong, Fangcheng Kou, Xiaoyu Sun, Yu Zou, Jinhan Mo, Xin Wang*. Towards zero energy buildings: a novel passive solar house integrated with flat gravity-assisted heat pipes, Applied Energy, 2022, 306 (A), 117981

8)      Ling Xu, Linchuan Dai, Linzhi Yin, Xiaoyu Sun, Wei Xu, Rui Yang*, Xin Wang*, Yinping Zhang. Research on the climate response of variable thermo-physical property building envelopes: A literature review. Energy and Buildings, 2020, 226 (11): 1-22.

9)      Pengfei Si, Yuexia Lv, Xiangyang Rong*, Lijun Shi, Jinyue Yan, Xin Wang*. An innovative building envelope with variable thermal performance for passive heating systems. Applied Energy, 2020, 269 (7): 1-11.

10)    Zhang Yin , Zhang Yinping, Wang Xin, Inverse problem method to optimize cascade heat exchange network in central heating system, International Journal of Energy Optimization and Engineering, 2020, 9(3): 62-82.

11)    Zhang Yin, Wang Xin*, Zhang Yinping, Optimal phase change temperature for building cooling heating and power system with PCM-TES based on energy storage effectiveness, Thermal Science, 2019, 23 (2):1085-1093

12)    Xin Wang*, Xiaoyu Sun, Chuck W. F. Yu. Building envelope with variable thermal performance: Opportunities and challenges, Indoor and Built Environment, 2018, 27(6), 729-733.

13)    Zhang Yin, Wang Xin, Wei Zhiyuan, Zhang Yinping, Feng Ya, Sodium acetate–urea composite phase change material used in building envelopes for thermal insulation, Building Services Engineering Research and Technology, 2018, 39(4), 475-491.

14)    ZhangYin, Wang Xin, Hu E, Optimization of night mechanical ventilation strategy in summer for cooling energy saving based on inverse problem method, Proceedings of the Institution of Mechanical Engineers Part A-Journal of Power and Energy, 2018, 232(8), 1093-1102.  

15)    Zhang Y, Si PF, Feng Y, Rong XY, Wang X*, Zhang YP. Operation strategy optimization of BCHP system with thermal energy storage: a case study for airport terminal in Qingdao, China. Energy and Buildings, 2017,154, 465–478

16)    Zhang Y, Zhang YP, Shi WX, Wang X. Application of concept of heat adaptor: Determining an ideal central heating system using industrial waste heat. Applied Thermal Engineering, 2017, 111, 1387-1393

17)    Zhang Y, Wei ZY, Zhang YP, Wang X, Inverse problem and variation method to optimize cascade heat exchange network in central heating system, Journal of Thermal Science, 2017, 26 (6), 545-551

18)    Zhang Y, Wang X*, Zhang YP, Zhuo SW. A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system. Energy, 2016, 114: 885-894.

19)    Zhang Y, Wang X*, Zhuo SW, Zhang YP. Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply-demand mismatch. Applied Energy, 2016, 167: 125-134.

20)    Zhang YP, Zhang Y, Shi WX, Shang R, Cheng R, Wang X. A new approach, based on the inverse problem and variation method, for solving building energy and environment problems: Preliminary study and illustrative examples. Building and Environment, 2015, 91, 204-218

21)    Hua J, Fan HM, Wang X, Zhang YP. A novel concept to determine the optimal heating mode of residential rooms based on the inverse problem method, Building and Environment, 2015, 85, 73-84.

22)    Ma T, Y HX, Zhang YP, Lu L, Wang X. Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook, Renewable and Sustainable Energy Reviews,2015, 43, 1273–1284

23)    Wang X, Cheng R, Zeng RL, Zhang YP. Ideal thermal physical properties of building wall in an active room, Indoor and Built Environment, 2014, 23(6), 839–853     

24)    Teng XG, Wang X*, Chen YL, Shi WX. A simple method to determine the optimal gas turbine capacity and operating strategy in building cooling, heating and power system, Energy and Buildings, 2014, 80, 623-630  

25)    Cheng R, Wang X, Zhang YP. Analytical optimization of the transient thermal performance of building wall by using thermal impedance based on thermal-electric analogy, Energy and Buildings, 2014, 80, 598-612

26)    Cheng R, Wang X, Zhang YP, Energy-efficient building envelopes with phase-change materials: new understanding and related research, Heat Transfer Engineering, 2014,35(11–12):970-984.

27)    Zhang Y, Chen Q, Zhang YP, Wang X. Exploring building’s secrets: the ideal thermophysical properties of a building’s wall for energy conservation, International Journal of Heat and Mass Transfer, 2013, 65, 265-273.

28)    Zhang Y, Zhang YP, Wang X, Chen Q. Ideal thermal conductivity of a passive Building wall: Determination method and understanding, Applied Energy, 2013,112, 967-974.

29)    Cheng R, Pomianowski M, Wang X*, Heiselberg P, Zhang YP. A new method to determine thermophysical properties of PCM-concrete brick, Applied Energy, 2013, 112, 988-998.

30)    Jiang F, Wang X*, Zhang YP. Analytical optimization of specific heat for building internal envelope, Energy Conversion and Management, 2012, 63, 239–244.

31)    Jiang F, Wang X*, Zhang YP. A new method to estimate optimal phase change material characteristic in a passive solar room, Energy Conversion and Management, 2011,52, 2437–2441.

32)    Zeng RL, Wang X, Di HF, Jiang F, Zhang YP. New concepts and approach for developing energy efficient buildings: Ideal specific heat for building internal thermal mass, Energy and Buildings, 2011, 43, 1081–1090. 

33)    Zhou GB, Yang YP, Wang X, Cheng JM. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves. Applied Energy, 2010, 87(8), 2666-2672. 

34)    Wang X, Zhang YP, Xiao W, Zeng RL, Zhang QL, Di HF. Review on thermal performance of phase change energy storage building envelope, Chinese Science Bulletin, 2009, 54(6), 920-928.

35)    Zeng RL, Wang X*, Chen BJ, Zhang YP, Niu JL, Di HF. Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux, Applied Energy, 2009, 86(12), 2661-2670.

36)    Xiao W, Wang X*, Zhang YP. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room, Applied Energy, 2009, 86 (10), 2013-2018.

37)    Yang R, Zhang Y, Wang X, Zhang YP, Zhang QW. Preparation of n-tetradecane-containing microcapsules with different shell materials by phase separation method, Solar Energy Materials and Solar Cells, 2009, 93, 1817-1822.

38)    Zhou GB, Yang YP, Wang X, Zhou SX. Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Applied Energy, 2009, 86(1), 52-59.

39)    Wang Y, Guo BH, Wan X, Xu J, Wang X, Zhang YP. Janus-like polymer particles prepared via internal phase separation from emulsified polymer/oil droplets, Polymer, 2009, 50, 3361-3369.

40)    Xu J, Wan X, Zhang BQ, Wang Y, Guo BH, Zhang YP, Wang X. Preparation of phase change material wax/p(MMA-co-AA) core-shell microcapsules, Acta Polymerica Sinica, 2009. 20(11), 1154-1156. 

41)    Chen BJ, Wang X*, Zeng RL, Zhang YP, Wang XC, Niu JL, Li Y, Di HF. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux, Experimental Thermal and Fluid Science, 2008, 32, 1638-1646.

42)    Wang XC, Niu JL, Li Y, Zhang YP, Wang X, Chen BJ, Zeng RL, Song QW. Heat transfer of microencapsulated PCM slurry flow in a circular tube, AIChE Journal, 2008, 54(4), 1110-1120.

43)    Zhou GB, Zhang YP, Wang X, Lin KP, Xiao W. An assessment of mixed type PCM-gypsum and shape-stabilized PCM plates in a building for passive solar heating, Solar Energy, 2007, 84(10), 1351-1360.

44)    Wang XC, Niu JL, Li Y, Wang X, Chen BJ, Zeng RL, Song QW, Zhang YP. Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube, International Journal of Heat and Mass Transfer, 2007, 50, 2480-2491.

45)    Wang X, Liu J, Zhang YP, Di HF, Jiang Y. Experimental research on a kind of novel high-temperature phase change storage heater, Energy Conversion and Management, 2006, 47, 2211-2222.

46)    Chen BJ, Wang X*, Zhang YP, Xu H, Yang R. Experimental research on laminar flow performance of phase change emulsion. Applied Thermal Engineering, 2006, 26(11-12), 1238-1245.

47)    Zhang YP, Ding JH, Wang X, Yang R, Lin KP. Influence of additives on thermal conductivity of shape-stabilized phase change material, Solar Energy Materials and Solar Cells, 2006, 90(11), 1692-1702.

48)    Xu H, Yang R, Zhang YP, Huang Z, Lin J, Wang X. Thermal physical properties and key influence factors of phase change emulsion, Chinese Science Bulletin, 2005, 50(1), 88-93.

49)    Wang X, Zhang YP, Hu XX. Turbulent heat transfer enhancement of microencapsulated phase change material slurries with constant wall heat flux, Journal of Enhanced Heat Transfer, 2004, 11(1), 13-22.

50)    Shi MH, Wang X. Investigation on moisture transfer mechanism in porous media during rapid drying process, Drying Technology, 2004, 22(1-2), 111-122.

51)    Zhang YP, Hu XX, Wang X. Theoretical analysis of convection heat transfer enhancement of microencapsulated phase change material slurries, Heat and Mass Transfer, 2003, 40 (1-2), 59-66.

52)    Zhang YP, Hu XX, Hao Q, Wang X. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application, Science in China, 2003, 46(2),131-140.

53)    Wang X, Zhang YP. Solid-liquid phase change heat transfer enhancement analysis in cylindrical and spherical walls,Journal of Enhanced Heat Transfer, 2002, 9(3), 109-115.

54)    Zhang YP, Wang X. Analysis of solid-liquid phase change heat transfer enhancement, Science in China, 2002, 45(6), 569-575.

 

【标準】

《建築牆體熱阻現場快速測試方法标準》T/CECS 857-2021,主編

《蓄熱型電加熱裝置》GB/T 39288-2020,參編

《無内置熱源相變蓄熱裝置》T/CECS 10023-2019,參編

《建築用相變材料熱可靠性測試方法》JG/T 534-2018,參編

《建築材料吸放濕性能測試方法》JC/T 2002-2009,參編

《建築門窗玻璃幕牆熱工計算規程》JGJ/T 151-2008,參編

——關注我們——
聯系我們
電話:010-62783496
郵箱:jzxy@tsinghua.edu.cn
地址:北京市海澱區beat365 100084
© 2024 版權所有 beat·365(中国)唯一官方网站